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Abstract: Boron enolates bearing menthone-derived chiral ligands are capable of fair 10 excellent
diastereocontrol in their reactions with chiral aldechydes. Thioester-derived (better than ketone derived)
enolates are able to control aldol stereochemistry irrespective of the aldehyde preferences.

The boron aldol reaction has become a powerful method for the control of both relative and absolute
stereochemistry in organic synthesis.! We have recently exploited transition state computer modelling to develop
two new boron reagents (1, X = Cl; 2, X = Br; Scheme 1) which allow the enantioselective synthesis of
ketone-derived anti (74-88% ee; R = Me; R! = alkyl, aryl) and unsubstituted aldols (55-76% ee; R = H; Rl =
alkyl, aryl),28 and thioester-derived anti (298% ee; R = Me, R! = SBuY) and unsubstituted aldols (87-97% ee;

R =H, R! = SBu!).2b
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In the reaction of chiral enolates with chiral aldehydes the intrinsic diastereofacial selectivities of the two
chiral components are either matched or mismatched.1:3 If the aldehyde (substrate) intrinsic selectivity is
moderate and the enolate (reagent) selectivity is very high, reagent control can be obtained.-3 Enolates bearing
chiral metal ligands are often able to impart a high degree of reagent control, e.g. 2,5-trans-dimethylborolanyl
enolates, 42 2,5-zrans-diphenylborolanyl enolates, %€ iron acyl enolates,3 diisopinocampheylboron enolates,$
chiral diamine complexed tin(I) enolates.”

Here we report that boron enolates derived from 2 or ent-2 (X = Br) show a high degree of reagent
control in reactions with chiral aldehydes, and that the efficiency of double asymmetric synthesis reflects the
level of enantiomeric excess of the reactions with achiral aldehydes [thiopropionates (298% ee) 2 thioacetates
(87-97% ee) > ethylketones (74-88% ee)].

Protected lactic aldehyde shows a very modest inherent preference for the Felkin-type product (3.4-anti)
in reactions with achiral thioester boron enolates (52:48 with thioacetate; 67:33 with thiopropionate).3 The chiral
boron enolates are able to impart complete reagent control with the propionates and very high selectivity with the
acetates (Scheme 2).
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Protected glyceraldehyde shows a more pronounced inherent preference for the Felkin-type product (3,4-
anti) in reactions with achiral thioester boron enolates (80:20 with thioacetate; 87.5:12.5 with thiopropionate).8
The chiral boron enolates are again able to impart very high reagent controlled selectivity with both the
propionates and the acetates (Scheme 3).

The situation is slightly more complicated with a-methyl-B-benzyloxypropionaldehyde. The aldol
addition of the Z boron enolate derived from diethyl ketone was recently studied both computationally and
experimentally and shown to be moderately 2,3-syn-3,4-anti (anti-Felkin) selective (65:35).93 The "normal”
Felkin TS is destabilized by the presence of a (+/-) double gauche pentane interaction between the methyl of the
Z enolate and that of the aldehyde.98.b The usual Felkin selectivity should be restored with E enolates. The
results (Scheme 4) are less clean than expected. Although it is possible that some aldehyde enolization and
racemization is occurring during the aldol reaction [this would also explain some variability (X 3 %) of the
product ratios in repeated reactions], there is no rationale at present for the different selectivity of the E-(OB)
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thiopropionate enolate [which is highly 3,4-syn (Felkin-type) selective] and of the thioacetate enolate [which is
highly 3,4-anti (anti-Felkin-type) selective] (Scheme 4, cf. entries 2,3 with 5,6). Finally the aldol reactions of
the E enolate derived from diethyl ketone were studied with a-methyl phenylacetaldehyde and a-methyl-$-

benzyloxypropionaldehyde (Scheme 5). The results reflect the lower enantioinducing power of the ketone
enolates compared to the thioester enolates. A computational study of these reactions using transition state
computer modelling22.93,10 gave results in qualitative agreement with the experiments (Scheme 5).
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