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Abstrtufz Boron enolates bearing menthooederived chirai ligands are capable of fair to excellent 
diastczocontml in their reactions with chiml aldehydes. Thioesterdexived (better than ketooe derived) 
enolanes me able to control &lo1 stereochemistry irrespective of the aldehyde preferences. 

The boron aldol reaction has become a powerful method for the control of both relative and absolute 

stereochemistry in organic synthesis.1 We have recently exploited transition state computer modelling to develop 

two new boron reagents (1, X = C1; 2, X = Br; Scheme 1) which allow the enantioselective synthesis of 

ketone-derived anti (74-882 ee; R = Me; R t = alkyl. aryl) and unsubstituted aldols (55-751 ee; R = H, Rt = 

alkyl, aryl),a and thioester-derived anti (298% ee; R = Me, RI= SBut) and unsubstituted aldols (87-9796 ee; 

R = H, Rt = SBu’).zb 
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In the reaction of chiral enolates with chiral aldehydes the intrinsic diastereofacial selectivities of the two 

chit-al components are either matched or mismatched. L3 If the aldehyde (substrate) intrinsic selectivity is 

moderate and the enolate (reagent) selectivity is very high, reagent control can be obtained.*3 Enolates bearing 

chiral metal ligands are often able to impart a high degree of reagent control, e.g. 2,5-tranF-dimethylblanyl 

enolatesPa 2,5-r~u~-~phenyl~~lanyl enolates,‘tbg iron acyl enolates,s dii~pin~ampheyl~~n enolates,e 

chi diamine complexed tin(B) enolates.7 

Here we report that boron enolates derived from 2 or ent-2 (X = Br) show a high degree of reagent 

control in reactions with chiral aldehydes, and that the efficiency of double asymmetric synthesis reflects the 

level of enantiomeric excess of the reactions with achiral aldehydes [thiopropionates (298% ee} 2 thioacetates 

(87-97% ee) > ethylketones (74-88% ee)]. 

Protected lactic aldehyde shows a very modest inherent preference for the Felkin-type product (3,4-a&) 

in reactions with achiral thioester boron enolates (52:48 with thioacetate; 67:33 with thiopropionate),a The chiral 

boron enolates are able to impart complete reagent control with the propionates and very high selectivity with the 

acetates (Scheme 2). 
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Protected glyceraldehyde shows a more pronounced inherent preference for the Felkin-type product (3/t- 

anti) in reactions with achiral thioester boron enolates (80:20 with thioacetate; 87.5: 12.5 with thiopropionate).* 

The chiral boron enolates are again able to impart very high reagent controlled selectivity with both the 

propionates and the acetates (Scheme 3). 

The situation is slightly more complicated with ~-methyl-~-benzyloxyp~pionaldehyde. The aldol 

addition of the Z boron enolate derived from diethyl ketone was recently studied both computationally and 

experimentally and shown to be moderately 2,3-syn-3.4-anti (anti-Felkin) selective (65:35).Sa The “normal” 

Felkin ‘l’s is destabilized by the presence of a (-I-/-) double gauche pentane interaction between the methyl of the 

Z enolate and that of the aldehyde. 9a.h The usual Feikin selectivity should be restored with E enolates. The 

results (Scheme 4) are less clean than expected. AIthough it is possible that some aldehyde enolization and 

racemization is occurring during the aldol reaction [this would also explain some variability (It 3 95) of the 

product ratios in repeated reactions], there is no rationale at present for the different selectivity of the WOW 
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thiopropionate enolate [which is highly 3.4~sy~t (Felkin-type) selective] and of the thioacetate! enolate [which is 

highly 3,4_ann’ (anti-Fe&in-type) selective] (Scheme! 4. cf- entries 2,3 with 5,6). Finally the aldol reactions of 

the’E enolate derived from diethyl ketone were studied with cc-methyl phenylacetaldehyde and a-methyl-@ 

benzyloxypropionaldehyde (Scheme 5). The results reflect the lower enantioinducing power of the ketone 

enolates compared to the tbioester enolates. A computational study of these reactions using transition state 

computer modelling~9~10 gave results in qualitative agrccmcnt with the experiments (Scheme 5). 

Scheme 3 

H 
2,3-anti-3,4-syn 2,3-anti-3,4-anti 

[(R) aIdehyde; aldehyde reface attack; anti-F&in] [(R) aldehyde; aklehyde siface attack; Feikfn] 

\ 

2.3-anti 2.3.syn 

Akfehyde Enolata E:Z 
Entry R L Abs. conf. 

1 Me L’ R 

2 Me L” R 

3 H L’ R 

4 H L” R 

r98:2 

>98:2 

100 5 95 

100 99 1 

100 3 97 

100 96 4 

Not detected 

Not detected 

- 

45 

59 

72 

75 

Scheme 4 

2,3-anti-3,4-syn 

SBu’ 

BnOCJ-b% “” 

[(R) 8ldehyd9; aldehyde reface attack: Feltin] I 
[(R) aldehyde; aldehyde siface attack; anti-Felkfn] 

2,3-anti 2.3-syn 

Aldahyde Enolate E:Z 
Entry R L h. mnf. [2,3-Anti: 2.3-Syn] 

MS L’ FUB l 98:2 51 49 Not detected 81 

Me L’ R ~98~2 100 95 5 Not detected 60 

Me L” R +98:2 100 35 65 Not detected 60 

H L’ R/s 50 50 - 70 

H L’ R loo 68 32 70 

H L” R 100 4 96 90 



Scheme 5 

,_ _ +~t _+j$.&&L _ *Et 

2,3-anii-3,4-syn 

[(R) :ld&~yde; aklehyde T(B face attack; Felkin] 

5 2,3-anti-3,~amf 

((R) afdehyde; aIdehyde siface attack; an&Fekfn] 

Entry R 

2.3-anti 2.3~syn 
Aldehyda E&ate E:2 %E.E. 

L Abs. conf. (2.3~Anti: 23Synl (major - - Yiald 3.4ayn 3.4-anti 3,4-syn 3&-anti % 
diister.) (Fekin) ffekinl 

1 Ph c-WI1 ws 58:44 

2 Ph L” WS 9O:lO 

3 CH2DBn =cBHtl R/S 70:30 

4 Ui@Bn L’ R/S s!i:5 

5 CH@Bn L’ R s5:5 

6 CH@Bn L” R Sk% 

1 Ph c-%Hw FM only E 

2 Ph L’ WS only E 

3 - c.cBH~t FUS WE 

4rzq$x+p+L’ FuS only E 

5 CH@H$‘I’ L’ R only E 

6 CH@CH@ L’ S only E 

0 

25 

0 

_ 

100 

100 

93 7 80 20 65 

96 4 290 <lo 75 

Bo 40 40 60 70 

S5 35 60 40 68 

75 25 60 49 72 

40 so 60 40 64 

78 22 

67 33 

86 14 

43 57 
Computational studies 

62 38 

26 74 

Acknowledgements. We thank the Commission of the European Union (HCM Network Grant: ERB 
CHR XCT 930141) for a research fellowship (to G.P.) and for financial support. 

1. 

2. 

3. 
4. 

5. 

6. 

7. 

!: 

10. 

References and Notes 

“Comprehensive Organic Synthesis”, ed. Trost, B.M. and Fleming, I., Pergatnon Press, Oxford, 1991, 
Vol.2 (Heathcock, C.H. editor): (a) Heathcock. C-H., chapter 1.5, page 133-179; chapter 1.6, page 181- 
238; (b) Kinx, M.; Williams, SF.; Masamune, S., chapter 1.7, page 239-275. 
(a) Gennari, C.; Hewkin, CT.; Molinari, F.; Bernardi, A.; Comotti, A.; Goodman, J-M.; Paterson, I. 
J.Org.Chcm. 1992.57, 5173. (b) Gennari, C.; Moresca, D.; Vieth, S.; Vulpetti, A. Angaw.Chem., 
Int.Ed.Engl. 1993,32, 1618. 
Masamune, S.; Choy, W.; Peterson, J.S.; Sita, L.R. An ew.Chem., Int.Ed.Engl. 198524. 1. 
(a) Short, R.P.; Masamune, S. Tetrahedron. Letters 19 4; 7,25 2841. (b) Reetz, M.T. Pure and A@. 
$“;?z. 1988,60, 1607. (c) Reetz, M.T.; Rtvadenelra, E.; Nremeyer Tetrahedron Letters 1990,31, 

(a) Choke, J.W.B.; Davies, S.G.; Naylor, A. Terrahedron 1993,49, 7955. (b) Beckett, RP.; Davies, 
S.G.; Mortlock, A.A. Tetrahedron : Asymmetry 1992,3, 123. (c) Bodwell, G.J.; Davies, S.G.; 
Mortlock, A.A. Tetrahedron 1991,47, 10077. 
Paterson, I,; Cumming, J.G.; Smith, J.D.; Ward, R.A. Tetrahedron Letters 1994.34, 441, and 
references therein. 
Kobayashi, S.; Ohtsubo, A.; Mukaiyama, T. C&em. fat. 1991,831. 
Gennari, C; Bemardi, A.; Cardani, S.; Scolastico, C. Te~ra~dr~n 1984,40,4059. 
(a) Gennari, C.; Vieth, S.; Comotti. A.; Vulpetti, A.; Goodman, J. M.; Paterson, I. Tetrahedron 1992, 
48,4439. (b) Roush, W.R. J.Org.Chem. 1991.56, 4151. 
Bemardi, A.; Capelli, A. M.; Gennari, C.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1990,5S, 
3576. 

(Received in UK 29 March 1994; accepted 29 April 1994) 


