

0040-4039(94)00841-8

Reagent Control in the Aldol Addition Reaction of Chiral Boron Enolates with Chiral Aldehydes

Cesare Gennari,* Daniela Moresca, Anna Vulpetti, and Gilles Pain

Dip. di Chimica Organica e Industriale, Universita' di Milano, Centro CNR (Sost.Org.Nat.), via Venezian 21, 20133 Milano, Italy

Abstract: Boron enolates bearing menthone-derived chiral ligands are capable of fair to excellent diastereocontrol in their reactions with chiral aldehydes. Thioester-derived (better than ketone derived) enolates are able to control aldol stereochemistry irrespective of the aldehyde preferences.

The boron aldol reaction has become a powerful method for the control of both relative and absolute stereochemistry in organic synthesis.¹ We have recently exploited transition state computer modelling to develop two new boron reagents (1, X = Cl; 2, X = Br; Scheme 1) which allow the enantioselective synthesis of ketone-derived *anti* (74-88% ee; R = Me; R¹ = alkyl, aryl) and unsubstituted aldols (55-76% ee; R = H; R¹ = alkyl, aryl),^{2a} and thioester-derived *anti* (\geq 98% ee; R = Me, R¹ = SBu^t) and unsubstituted aldols (87-97% ee; R = H, R¹ = SBu^t).^{2b}

In the reaction of chiral enolates with chiral aldehydes the intrinsic diastereofacial selectivities of the two chiral components are either matched or mismatched.^{1,3} If the aldehyde (substrate) intrinsic selectivity is moderate and the enolate (reagent) selectivity is very high, reagent control can be obtained.^{1,3} Enolates bearing chiral metal ligands are often able to impart a high degree of reagent control, e.g. 2,5-trans-dimethylborolanyl enolates,^{4a} 2,5-trans-diphenylborolanyl enolates,^{4b,c} iron acyl enolates,⁵ diisopinocampheylboron enolates,⁶ chiral diamine complexed tin(II) enolates.⁷

Here we report that boron enolates derived from 2 or ent-2 (X = Br) show a high degree of reagent control in reactions with chiral aldehydes, and that the efficiency of double asymmetric synthesis reflects the level of enantiomeric excess of the reactions with achiral aldehydes [thiopropionates ($\geq 98\%$ ee) \geq thioacetates (87-97% ee) > ethylketones (74-88% ee)].

Protected lactic aldehyde shows a very modest inherent preference for the Felkin-type product (3,4-*anti*) in reactions with achiral thioester boron enolates (52:48 with thioacetate; 67:33 with thiopropionate).⁸ The chiral boron enolates are able to impart complete reagent control with the propionates and very high selectivity with the acetates (Scheme 2).

Protected glyceraldehyde shows a more pronounced inherent preference for the Felkin-type product (3,4anti) in reactions with achiral thioester boron enolates (80:20 with thioacetate; 87.5:12.5 with thiopropionate).⁸ The chiral boron enolates are again able to impart very high reagent controlled selectivity with both the propionates and the acetates (Scheme 3).

The situation is slightly more complicated with α -methyl- β -benzyloxypropionaldehyde. The aldol addition of the Z boron enolate derived from diethyl ketone was recently studied both computationally and experimentally and shown to be moderately 2,3-syn-3,4-anti (anti-Felkin) selective (65:35).^{9a} The "normal" Felkin TS is destabilized by the presence of a (+/-) double gauche pentane interaction between the methyl of the Z enolate and that of the aldehyde.^{9a,b} The usual Felkin selectivity should be restored with E enolates. The results (Scheme 4) are less clean than expected. Although it is possible that some aldehyde enolization and racemization is occurring during the aldol reaction [this would also explain some variability (± 3 %) of the product ratios in repeated reactions], there is no rationale at present for the different selectivity of the E-(OB) thiopropionate enolate [which is highly 3,4-syn (Felkin-type) selective] and of the thioacetate enolate [which is highly 3,4-anti (anti-Felkin-type) selective] (Scheme 4, cf. entries 2,3 with 5,6). Finally the aldol reactions of the *E* enolate derived from diethyl ketone were studied with α -methyl phenylacetaldehyde and α -methyl- β benzyloxypropionaldehyde (Scheme 5). The results reflect the lower enantioinducing power of the ketone enolates compared to the thioester enolates. A computational study of these reactions using transition state computer modelling^{2a,9a,10} gave results in qualitative agreement with the experiments (Scheme 5).

Entry	R	L	Aldehyde Abs. conf.	Enolate <i>E : Z</i> [2,3-Anti: 2,3-Syn]	%E.E. (major diaster.)	3,4-anti (Felkin)	3,4-syn	3,4-anti 3,4-syn (Felkin)	Yield %
1	Me	L.	R	>98:2	100	5	95	Not detected	45
2	Ma	۲	R	>98:2	100	99	1	Not detected	50
3	н	L*	R		100	3	97		72
4	н	۲	R	***	100	96	4		75

	R	L	Aidehyde Abs. conf.	Enclate <i>E : Z</i> [2,3-Anti: 2,3-Syn]	%E.E. (major diaster.)	2,3-anti		2,3-syn	
Entry						3,4-syn (Felkin)	3,4-anti	3,4-anti 3,4-syn (Felkin)	Yield %
1	Me	L*	R/S	>98:2	-	51	49	Not detected	81
2	Me	۲.	R	>98:2	100	95	5	Not detected	60
3	Ме	۲.,	R	>98:2	100	35	65	Not detected	60
4	н	L*	R/S	ine i	-	50	50		70
5	н	L*	R		100	68	32		70
6	н	L**	R		100	4	96	===	60

Scheme 4

H H Me H [(R) aldehyde; aldehyde <i>r</i>	→ R 4 3 2,3-anti-3,4-syn a face attack; Felkin]	Me H Me O+ H R [(R) aldehyde; aldehyde a	Me Me R i OH 2,3-anti-3,4-anti s/ face attack; anti-Felkin]
		2 3 anti	2.2 eva

		L	Aldehyde Abs. conf.	Enolate <i>E : Z</i> [2,3-Anti: 2,3-Syn]	%E.E. (major diaster.)	2,3-anti		2,3-syn			
Er	ntry R					3,4-syn (Felkin)	3,4-anti	3,4-syn (Felkin)	3,4-anti	Yield %	
1	Ph	c-C ₆ H ₁₁	R/S	56:44	0	93	7	80	20	65	
2	Ph	L*	R/S	90:10	25	96	4	≥90	≤10	75	
3	CH ₂ OBn	c-C ₈ H ₁₁	R/S	70:30	0	60	40	40	60	70	
4	CH ₂ OBn	L*	R/S	95:5	-	65	35	60	40	68	
5	CH ₂ OBn	L.	R	95:5	100	75	25	60	40	72	
6	CH ₂ OBn	۲	R	92:8	100	40	60	60	40	64	
1	Ph	c-C ₆ H ₁₁	R/S	only E		78	22)			
2	Ph	L*	R/S	only E		67	33				
3	CH2OCH2Pr	c-C ₆ H ₁	1 R/S	only E		86	14				
4	CH2OCH2Pr	Ľ	R/S	only E		43	57	> Compi	Udies		
5	CH ₂ OCH ₂ Pr	L*	R	only E		62	38				
6	CH2OCH2Pr	L.	S	only E		26	74	J			

Acknowledgements. We thank the Commission of the European Union (HCM Network Grant: ERB CHR XCT 930141) for a research fellowship (to G.P.) and for financial support.

References and Notes

- 1. "Comprehensive Organic Synthesis", ed. Trost, B.M. and Fleming, I., Pergamon Press, Oxford, 1991, Vol.2 (Heathcock, C.H. editor): (a) Heathcock, C.H., chapter 1.5, page 133-179; chapter 1.6, page 181-
- (a) Incancock, C.I. Conton, (a) Incancock, C.I., Chapter 1.5, page 155-179; Chapter 1.0, page 181-238; (b) Kim, M.; Williams, S.F.; Masamune, S., chapter 1.7, page 239-275.
 (a) Gennari, C.; Hewkin, C.T.; Molinari, F.; Bernardi, A.; Comotti, A.; Goodman, J.M.; Paterson, I. J.Org.Chem. 1992, 57, 5173. (b) Gennari, C.; Moresca, D.; Vieth, S.; Vulpetti, A. Angew.Chem., Int.Ed.Engl. 1993, 32, 1618. 2.
- 3.
- Masamune, S.; Choy, W.; Peterson, J.S.; Sita, L.R. Angew.Chem., Int.Ed.Engl. 1985, 24, 1. (a) Short, R.P.; Masamune, S. Tetrahedron Letters 1987, 28, 2841. (b) Reetz, M.T. Pure and Appl. Chem. 1988, 60, 1607. (c) Reetz, M.T.; Rivadeneira, E.; Niemeyer Tetrahedron Letters 1990, 31, 4. 3863.
- 5. (a) Cooke, J.W.B.; Davies, S.G.; Naylor, A. Tetrahedron 1993, 49, 7955. (b) Beckett, R.P.; Davies, S.G.; Mortlock, A.A. Tetrahedron : Asymmetry 1992, 3, 123. (c) Bodwell, G.J.; Davies, S.G.; Mortlock, A.A. Tetrahedron 1991, 47, 10077.
- 6. Paterson, I.; Cumming, J.G.; Smith, J.D.; Ward, R.A. Tetrahedron Letters 1994, 34, 441, and references therein.
- 7. Kobayashi, S.; Ohtsubo, A.; Mukaiyama, T. Chem. Lett. 1991, 831.
- Gennari, C.; Bernardi, A.; Cardani, S.; Scolastico, C. Tetrahedron 1984, 40, 4059. 8.
- (a) Gennari, C.; Vieth, S.; Comotti, A.; Vulpetti, A.; Goodman, J. M.; Paterson, I. Tetrahedron 1992, 48, 4439. (b) Roush, W.R. J.Org.Chem. 1991, 56, 4151. Bernardi, A.; Capelli, A. M.; Gennari, C.; Goodman, J. M.; Paterson, I. J. Org. Chem. 1990, 55, 9.
- 10. 3576.

(Received in UK 29 March 1994; accepted 29 April 1994)